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Abstract: In this talk we present our detail study ( theory and numbers ) [l] on the shad- 

s 

owing corrections to the gluon structure functions for nuclei. Starting from rather contraversial 
information on the nucleon structure function which is originated by the recent HERA data, 

2 

we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula 

e 

[3] and estimate the value of the shadowing corrections in this case. Than we calculate the 
first corrections to the Glauber approach and show that these corrections are big. Based on 

e 
this practical observation we suggest the new evolution equation which takes into account the 

AZ shadowing corrections and solve it. We hope to convince you that the new evolution equation 
gives a good theoretical tool to treat the shadowing corrections for the gluons density in a 
nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the 
time evolution of the nucleus - nucleus cascade. The initial conditions should be fixed both 
theoretically and phenomenologically before to attack such more complicated problems as the 
mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theo- 
retically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus 
interaction. 

l Emaii: ayala@if.ufrgs.br 

l * E-mail:gay@if.ufrgs.br 
t E-mail: levinOhep.anl.gov:leving@ccsg.tau.ac.il 



1 Introduction. 

The main goa1 of this talk is to share with you our experience and results that we got during 

the last two years reconsidering the whole issue of the shadowing corrections ( SC ) to the gluon 
density in nuclei [l]. The title which reflects the key problems that we are going to discuss is: 

“ All ( th eor and numbers ) about the SC to gluon density in nuclei” y 

It is well known that the gluon density is the most important physical observable that 
governs the physics at high energy (low Bjorken X) in deep inelastic processes [2]. Dealing with 
nucleus we have to take into account the shadowing correction (SC) due to rescattering of the 
gluon inside the nucleus, which is the main point of interest in this paper. \C’e show that SC can 
be treated theoretically in the framework of perturbative QCD (pQCD) and can be calculated 
using the information on the behavior of the gluon structure function for the nucleon. 

The outline of the talk looks as follows. We start with our motivation answering the question 
why we got interested in the SC for nucleus gluon density. In section 3 we will discuss the 
theory and numerics of the Glauber ( Mueller ) approach emphasizing it’s theory status and 
the estimates for the SC that came out of it, After short discussion in section 4 the first 
corrections to the Glauber approach we will present what we consider as a right way of doing, 
namely, the new evolution equation that sums all SC ( section 5 ). In section 6 we are going to 
discuss our next steps that we plan to do in a nearest future, while in section 7 we will give our 
answer to the hot question: and what 9, trying to collect all problems of RHIC physics that we 
will be able to answer using our approach. 

2 Motivation. 

Let us start with a brief summary of the HERA results for the nucleon structure functions 
( parton densities in a nucleon). The experiment [4] h s ows that the deep inelastic structure 
function F’~(z, Q’) increases in the region of small z ( at high energies): 

f+, Q2> x & for lo-* > 5 > 1o-5 

at large and small ( Q” M 1 1 - 2GeV* ) values of the photon virtualities Q”. 

At first sight we can conclude from the analysis based on the DGLAP evolution equations 
undertaken through all the world R[6] [7] [8] that : 

1. The DGLAP evolution equations work quite well and no other ingredients are needed to 
describe all the HERA data. 



2. The parton cascade is rather deluted system of partons with small parton - parton 
interaction which can be neglected in a first approximation. In other words we do not need any 

SC to describe the experimental data. 

3. The phenomenological input. namely: the quark and gluon distribution at initial virtuality 

Q* = Qi can be chosen at sufficiently low values of Q” using the backward evolution of the 
experimental data in the region of Q” FZ 4 - 5GeV2, Even more. the craziest parameterization 

that we have seen in our life - the GRV one [6] d oes it’s job perfectly well, starting with 

Qi = 0.3GeV' ?!. 

What we have discussed is moreless common opinion of all experts in DIS and one can find 
it in many plenary and review talks during the last two years. 

However we would like to draw your attention to several facts which do not fit to this 
common scheme: 

1. The best parameterization of the HERA data is not the solution of the DGLAP equations 
but a simple formula 191: 

Q2 Q2 
F2(xc,Q2) = a + m log - log 2 

Qi Qi x 

with a=0.078 ; m=0.364 ; x0=0.074 ; Qi =0.5 GeV*. It is clear that this simple formula 

cannot be a solution of the DGLAP evolution equations. To make obvious this remark it is 

enough to recalculate the gluon structure function from the above expression as it has been 
done in Ref.[9]. Indeed, zG(z, Q*) turns out to be equal to 

xG(x,Q*) = 3 log z 

without any Q* - dependence within the direct contradiction with the DGLAP evolution. 

2. Using the HERA data we can evaluate the parameter which characterizes the value of 
the SC, namely [2] 

K = z xG(x:Q*) : (1) 

where xG( 2, Q’) is the gluon structure function and R* is the radius of area populated by 
gluons in a nucleon. The physical meaning of K becomes clear if we rewrite it in the form 

4W 
K. = xG(x, Q”) 3 : 

where g( GG) is the cross section of two gluon interaction in our parton cascade calculated by 

Mueller and Qiu [lo], namely, cr( GG) = 9. The physical meaning of this formula is the 

probability of the gluon - gluon interaction inside the parton cascade. It looks very natural 
if we compare eq. (1) with the small parameter for proton - nucleus interaction. Indeed: the 
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Figure 1: The J/9 production without a) and with bj dissociation of the proton. 

parameter which governs the value of the Glauber corrections for proton - nucleus interaction 

$A = A%, where A is the number of the constituents (nucleons) , a(pp) is the cross section 

of the interaction of our constituents and rRi is the area populated by nucleons. The question 
arises what is the value of R in eq. (l)? Using the new HERA data on photoproduction of 
J/Q meson [ll] we are able to estimate the value of R* in the definition of K. (see eq. (1) ). 
To illustrate the point we picture in Fig.1 the process of J/XI! photoproduction in the additive 
quark model (AQM ). W e see that we have two processes with different slopes (B ) in t ( 

or in b: ): the J/$ production without ( Fig.la ) (B,r = SGeV-*) and with ( Fig.lb ) ( 
B;, = 1.66GeV-* ) d issociation of the proton. The AQM gives us the simplest estimates for 
the resulting slope ( R* ) in eq. (1) if we neglect any slope from the Pomeron - J/6 vertex in 
Fig. 1, namely 

1 
jji= i{& + $} x :GeV-*. (2) 

cl tn 

Fig.2 shows the contour plot for K: using the GRV parameterization [6] for the gluon structure 
function and the value of R* = 5GeV-*. One can see that n reaches K. = 1 at HERA kinematic 
region, meaning shadowing corrections take place. 

3. The situation looks even more contraversparameterizationial if we plot the average value 
of the anomalous dimension < y > = aln(sG(z, Q”))/alnQ * in the GRV parameterization. 
* Fig.3 shows two remarkable lines: < y >= 1, where the deep inelastic cross section reaches 
the value compatible with the geometrical size of the proton: and < y > = l/2, which is the 
characteristic line in whose vicinity both the BFKL Pomeron ( see Ref.[l2] ) and the GLR 
equation [2] should take over the DGLAP evolution equations.We will discuss later what are 

* We will discuss below the definition of the anomalous dimension and why this ratio is the average anomalous 

dimension. 
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Figure 2: Contour plot for K for R* = SGev-*. 

the BFKL and the GLR equations. what we need to know right now: is only the fact that both 
equations give the signal of the new physics. The HERA data passed over the second line and 
even for sufficiently small values of Q* they crossed the first one without any indication of a 
strange behaviour near these lines. 

Concluding this brief summary of the HERA data and physics behind them we would like 
to repeat that to our taste the situation at HERA looks very controversial and the statement 

that the DGLAP evolution works is first but not the last outcome of the HERA data. On the 
other hand we have to develop the new approach to the SC, more general than the GLR one, 
which will allow us to give reliable estimates for the SC in the kinematic region to the left of 
the line < -/ > = l/2. This is why we decided to reconsider everything that has been known 
about the SC? trying to forget everything that we knew about them. and to start our analisys 
of the SC from the very beginning. We also decide to choose the gluon density in a nucleus as 
a laboratory or training ground for the new approach to the problem of the SC. 

We have three reasons for such a choice: (i) the nucleus DIS is easier to handle theoretically, 
as we will show in the main body of our talk;(ii) the previous analysis of the SC shows that this 
is mainly density effect in the parton cascade ( see review [13] f or example ) and we anticipate 
larger gluon density for DIS with a nucleus; (iii) the RHIC is coming and the gluon density in 
nuclei will provide the initial condition for any phenomenological cascades for nucleus - nucleus 

interaction at high energies. 

3 The Glauber approach in QCD . 

3.1 The Mueller formula. 

4 4 
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Figure 3: Contours for < -f > = 1 and < -i = l/2. 

Figure 4: The structure of the parton cascade in the Glauber ( .Mzleller) formula. A denotes the 
nucleus, N - the nucleon, G*(Q2) - th e virtual gluon and cr,v(rf) is the nucleon cross section. 



The idea how to write the Glauber formula in QCD was originally formulated in two papers 
Ref.[14] and Ref. [3]. H owever. the key paper for our problem is the second paper of A. Mueller 

who considered the Glauber approach for the gluon structure function. Nevertheless: it is easier 
to explain the main idea considering the penetration of quark - antiquark pair, produced by 
the virtual photon, through the target. While the boson projectile is traversing the target. 

the distance rL between the quark and anti-quark can vary by amount Ar, SC RA$+ where E 
denotes the energy of the pair in the target rest frame and RA is the size of the target (see 

Fig.4). The quark transverse momentum is k, EK l/rl. Therefore 

Arl xRs < i-1, 

and is valid if 
rts > 2mR, 

where s = 2mE. In terms of Bjorken 2. the above condition looks as follows 

1 

’ ” 2mR’ 

(3) 

(4) 

(3 

Therefore the transverse distance between quark and antiquark is a good degree of freedom 
[14][3][17]. A h b s as een shown by A.Mueller, not only quark - antiquark pairs can be considered 
in a such way. The propagation of a gluon through the target can be treated in a similar way 
as the interaction of gluon - gluon pair with definite transverse separation rt with the target. It 
is easy to understand if we remember that virtual colorless graviton or Higgs boson is a probe 
of the gluon density. 

The total cross section of the absorption of gluon(G*) with virtuality Q” and Bjorken x can 
be written in the form: 

&,( G' ) = J,' dz / g 1 $Q~*(Q2. rt, x? z) a.~(x, rf) [9y'(Q2, rtr x: z)]*, (6) 

where t is the fraction of energy which is carried by the gluon, qy* is the wave function of the 
transverse polarized gluon and gA(x, rf) is the cross section of the interaction of the GG- pair 
with transverse separation rt with the nucleus. This cross section can be written in the form: 

gA(x: r:) = 2 1 d2bt Ima(x, r-1, b,) , (7) (7) 

where a is the elastic amplitude for which we have the s-channel unitarity constraint: 

2 Im a@: ri: bt) = I+ TI, &)I2 + Gin(x: fl, bt) , (8) 

where Gi, is the contribution of all the inelastic processes. Let us recall that two terms in 
eq. (8) have different physical meaning: the left hand side and the first term in the right hand 
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side describe the interference between the incoming plane wave and outgoing spherical wave 
which amplitude is the elastic scattering amplitude (u). These two terms cannot be calculated 
using a classical approach or simple Monte Carlo - like model. The Quantum hIechanics 

of the interaction is mostly absorbed in these two terms while the last term has a simple 
probabilistic meaning, namely, the probability of any inelastic interactions, and can be treated 
almost classically and, for certain, in the probabilistic way, for example in Monte Carlo-like 
models. The unitarity establishes the correlation between two unknowns a and Gi, and has 
the general solution: 

~(5: rI, b,) = i { 1 - e- ~R(z*r~~bt) } ; 

Gi,(x,rl, b,) = 1 - e-n(zqrilbr) . 

(9) 

One can see that R has a simple physical meaning, namely e-n is the probability that GG-pair 

has no inelastic interaction during the passage through the target. The opacity 0 is an arbitrary 
real function, which can be specified only in more detail theory or model approach than the 
unitarity constraint. One of such specific model is Glauber approach or Eikonal model. 

However, before we will discuss this model let us make one important remark on the strategy 
of the approach to the SC. We are trying to built a model or theory for the total cross section 
( or for the gluon structure function ) not because the SC should be the strongest one in 
this particular observable, but because if we will be able to calculate opacity R we will have 
the theory or model for all inelastic processes. Indeed, using AGK cutting rules [15] we can 
calculated any inelastic process7 if we know fl, in accordance with the s-channel unitarity. It 
is worthwhile mentioning that the inverse procedure does not work. If we know the SC in all 
details for a particular inelastic process. say for the inclusive production, we cannot reconstruct 
all other process and the total cross section in particular. 

Now, let us built the Glauber approach. First, let us assume that 0 is small (n << 1 
) and it’s bt dependence can be factorised as fl = Sl(x: rl) .S’(b,) with the normalization: 
J dLb* S(b*) = 1. Expanding eq. (9) and substituting it in eq. (i’), one can obtain: 

OA(X:TL) = fi(x! 7-l) (10) 

At small R the cross section of the deep inelastic process with a nucleus is proportional to the 
number of nucleons in a nucleus (A), namely, 

HA = A gN(x: rl). 

To calculate fi we need to substitute everything in eq. (6) and use the formula for flA( G’) = 

$xGA(x,Q~) as well as the expression for the wave function of the GG- pair in the virtual 

gluon probe. Such calculations has been done in Ref.[3] and we recapture here the result ( see 
for example Ref. [l] for more details ): 

fi = Aary(x:rl) = 
3T2 
4 r: x% $) . (11) 



The Glauber (eikonal ) approach is the assumption that 0 = !? S(b,) with fi of eq. (11) 
not only in the kinematic region where !? is small but everywhere. From the point of view 
of the structure of the final state this assumption means that the rich typical inelastic event 
was modeled as a sum of the diffraction dissociation of GG - pair plus uniform in rapidity 
distribution of produced gluons. For example. we neglected in the Glauber approach all rich 

structure of the large rapidity gap events including the diffractive dissociation in the region of 
large mass. 

Substituting everything in eq. (11) and eq. (6) and using the wave function calculated by 
Mueller in Ref.[3] we obtain the Glauber (Mueller) formula for the gluon structure function: 

XGA(X, Q”) = -$ /’ !..$/i !?I$ Jop $2 { 1 _ e-f~EG(~‘*G)S(bf)} (12) 
z 

It is easy to see that the first term in the expansion of eq. (12) with respect to g gives the 
DGLXP equation in the region of small T. 

To calculate the profile function S(bt) we make the usual assumption that < bf >.v in the 
interaction of GG - pair with the nucleon is much smaller than the nucleus radius ( < bf > < 
RA. Therefore, S(b ) t can be expressed through the nucleon wave function in a nucleus, namely 

sA(qt, b,) = 1 dtl eiqzzl qA(z1, b,; r2, . ..r., PA)\II*(Zl, b,; 7’2, . ..ri. rA) fi d3 r; , 
i=2 

(13) 

where the wave function is normalized as 

/ 

A 

qA(z1, bt; T2, . ..r., rA)9*(z1, b,; r2, . ..r., 7-A) n d3 ri = A , (14) 
t=l 

Assuming that there is no correlation between nucleons in a nucleus and the simple Gaussian 
form of a single nucleon wave wave function we derive the Gaussian parameterization for S(b*), 
namely 

SA(%,bf) = -$e I 
A 

where the mean radius Ri is equal to 

(15) 

and Rws is the size of the nucleus in the Wood-Saxon parameterization. We choose Rws = 

ro Ai with ro = 1.3 fm in all our calculation. We are doing all calculation in the rest frame of 
the nucleus where we can neglect the change of energy for the recoil nucleon in the nonrelativistic 
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theory for the nucleus. Indeed. its energy is E,, = m + & and 2 -K 42. At high energy ( 

small I ) we can neglect also the q,-dependance ( see Ref. [l] for details). 

Using Gaussian parameterization for S( b,) ( see eq. (15) j we can take the integral over b, 

and obtain the answer (iVc = ;V, = 3) 

ZGA(X,Q') = C + ln(n&. rf))G(w(x'. rzj)} (16) 

where C is the Euler constant and El is the exponential integral (see Ref.[23] Eq. 5.7.11) and 

m(x’, rf) = 
3cusArr2 1 

2R2 
A 

t x’GgGLAP(x’, ?) (17) 

The eq. (12) is the master equation of this section and it gives a way to estimate the value of 

the SC. We would like to stress that we have only adjusted the approach of Ref. [3] to the 
rescattering in a nucleus. It means that we did nothing except that we share the responsibility 
with A. AMueller for eq. (12). 

One can see that the Mueller formula of eq. (12) depends only on K. If K is small ( K << 1 
), we can expand eq. ( 16) and obtain the DGLAP evolution equation for the gluon structure 
function. If K >> 1, we can use the asymptotic formula for El and obtain: 

~GA(x, Q') = 9/,' $I./+& $f {c f ln(nG(x),T:)} , 
0= 0= 

where Q~(z’) is the solution of the equation: 

KG(x’:r, - 2 = Q;ix,) > = l ’ 

In Fig.5 are plotted the contours of K for a nucleon target that give an idea in which kinematic 
region we expect big SC. 

3.2 Theory status of the Mueller formula. 

In this section we shall recall the main assumptions that have been made to obtain the 
Mueller formula. 

1. The gluon energy (x) should be high ( small) enough to satisfy eq. (1) and crsln( l/z) 5 
1. The last condition means that we have to assume the leading ln(l/x) approximation of 
perturbative QCD for the nucleon gluon structure function. 

2. The DGLAP evolution equations hold in the region of small x or. in other words, 
asln(l/r:) 5 1. One of the lessons from HERA data is the fact that the GLAP evolution can 
describe the experimental data. 

9 
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Figure 5: The contours of K for Nucleon, Ca and Au. 
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These two assumptions mean that we describe the gluon emission in so called Double Log 
Approximation ( DLA) of perturbative QCD. or in other words. we extract from each Feynman 
diagram of the order CY: the contribution of the order (os In l/r lnQ’/Q~)“~ neglecting ail 
other contributions of the same diagram. In terms of the DGLAP evolution, we have to assume 
that the DGLAP evolution equations describe the gluon emission in the region of small X. 
However. the first assumption is very important for the whole picture. since it allows us to 
treat successive rescatterings as independent and simplifies all formulae reducing the problem 
to an eikonal picture of the classical propagation of a relativistic particle with high energy 

(E > p-l, where /J is the scattering radius in the nuclear matter) through the nucleus. The 
second one simplifies calculations but we can consider the BFKL evolution [12] instead of the 
DGLAP one. 

3. Only the fastest partons (GG pairs) interact with the target. This assumption is an 
artifact of the Glauber approach, which looks strange in the parton picture of the interaction. 
Indeed, in the parton model we rather expect that all partons not only the fastest ones should 
interact with the target. In the next section we will show that corrections to the Glauber 
approach due to the interaction of slower partons are essential in QCD too. 

4. There are no correlations (interaction) between partons from the different parton cascades 
(see Fig.4 ). This assumption means that even the interaction of the fastest GG-pair was taken 
into account in the Mueller formula only approximately and we have to assume that we are 
dealing with large number of colours to trust the Mueller formula. Indeed, it has been proven 
that correlations between partons from different parton cascades lead to corrections to the 
Mueller formula of the order of l/N:, where NC is the number of colours ( see Ref.[l] and 
references therein for detail discussions on this subject). 

5. There are no correlations between different nucleons in a nucleus. 

6. The average b, for GG pair-nucleon interaction is much smaller than RA. 

The last two are usual assumptions to treat nucleus scattering. We have used the specific 
Gaussian parameterization for b, dependence. Also, one can easily generalize our formula in 

more general case! as Wood-Saxon parameterization [18]. 

3.4 The modified Mueller formula. 

The next step of our approach is to give an estimate of the SC using the Mueller formula. 
However, before doing so, we have to study how well works the DLA of perturbative QCD 

which was heavily used in the derivation of the Mueller formula. Let us recall that the solution 
of the DGLAP evolution equations can be easily found in the moments space. For any function 
f(x) we define the moment f(w) as 

f(w) = /,’ d=“f(z) - 

11 



Note that the moment variable ti is chosen such that the LU’ = 0 moment measures the number 
of partons. and the moment UL: = 1 measures their momentum. An alternative moment vari- 
able :Y = Q - 1 is often found in the literature. The r-distribution can be reconstructed by 
considering the inverse 1lellin transform. which for the gluon distribution reads: 

sG(s: Q") = & 
J 

c dw gjn(w: Q;) Ed Wl/z) + -4~) WQ'/Qi) ? 

where the contour of integration C is taken to the right of all singularities and function gtn is 
defined by the initial gluon distribution at Q” = Qi. The anomalous dimension -f(w) has to be 
calculated in perturbative QCD and can be written in the form: 

cusNc 1 
y(w) = - . - + 241yy(3) 1 4 

7-r d 7r4 .> + O(z) + es). (20) 

In the DLA we take only the first term of this series. namely, 

DLA = CrSlV~ 1 
7 -.-’ 

x d ’ 

In the BFKL evolution equation all terms of the order (2)” have to be taken into account. 
They generate the BFKL anomalous dimension of the form: 

where yBFKL (u = UL) = l/2. Th e main qualitative property of the BFKL anomalous dimen- 
sion is the fact that it cannot exceed the value l/2. 

The momentum conservation means that -((w = 1) = 0. None of the DLA or the BFKL 
anomalous dimension satisfies this equation. because they give the good approximation to the 
full anomalous dimension only in the region of small values of ~3 or: in other words. in the region 

of small 2. 

The DLA anomalous dimension leads to the simple evolution equation: 

~3~zG(rc, Q" cus lvc 

dln(l/z)alnQ* = x rcG(z’Q2) ’ (21) 

Now let us estimate how well works the DLA. In all our numerical estimates we use the GRV pa- 
rameterization [6] for the nucleon gluon distribution, which describes all available experimental 
data quite well, including recent HERA data at low 5. 1Ioreover: GRV is suited for our purpose 
because (i) the initial virtuality for the GLAP evolution is small (Qi z 0.25GeV’) and we can 
discuss the contribution of the large distances in MF having some support from experimental 
data; (ii) in this parameterization the most essential contribution comes from the region where 
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cr,lnQ* M 1 and cr,lnl/x M 1. This allows the use of the double leading log approximation of 

pQCD. where the MF is proven [3]. It should be also stressed here, that we look at the GRV 
parameterization as a solution of the DGLAP evolution equations. disregarding how much of 
the SC has been taken into account in this parameterization in the form of the initial gluon 
distribution. 

However, in spite of the fact that the GLAP evolution in the GRV parameterization starts 
from very low virtuality ( Qi - 0.25GeV2) it turns out that the DLA still does not work quite 

well in the accessible kinematic region (Q’ > lGeV*! 5 > 10-s). To illustrate this statement 
we plot in Fig.5 the ratio: 

<ES&> 32,GGRV(z,Q2 
T 81n(l/r)~lnQ2 

g,& 
= 

xGGRV (x, Q’) ’ 

This ratio is equal to 1 if the DLArholds. From Fig. j one can see that this ratio is rather 
around l/2 even at large values of Q*. 

1.5 "' 

- a‘- 1. Gev’ 

0 I.0 

y-ln(l/x) y-ln(l/x) 

Figure 6: The ration Ffdff tl or i eren vu ues of Q” in the GRV parameterization 

We can understand why the corrections to the DLA is so big modeling the complicated 

expression for y of eq. (20) by simple formula [19] t: 

WV, 
Y(W) = y. {; - 1). (22) 

Eq. (22) has correct the DLA limit at small w and it satisfies the momentum conservation 
( y(w = 1) = 0). Th e t ypical values of w in all available parametrizations,even in the GRV 

t We are very grateful to Yu. Yu. Dokshitzer for enlighting discussions on this problem during the RHIC’96 
Workshop 
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, which is the closest to the DLA. is < d > = 0.5. Therefore, we have about 50% correction 
to the DLA. Therefore. the DLA cannot provide a reliable estimates for the gluon structure 

function. 

On the other hand. our master equation (see eq. (12)) ’ is p roven in DLA. Willing to develop 
a realistic approach in the region of not ultra small 2 (x > 10s4) we have to change our master 
equation ( eq. (12) ). W e suggest to substitute the full DGLAP kernel ( the full expression of 
eq. (20) ) in the first term of the r.h.s. This procedure gives 

zGA(?Q~) = xGA(x, &‘)( eq. (12) ) i- AxG:~~(x: Q2) 

CrSfV, 1 
JJ 

Q2 
‘4 - 

dx’ dQ” 
- 

T = Q; Q; 
- - x’GgRV (x’, Q’2) . 
xi Qt2 (23) 

The above equation includes also I1xGgRV( x, Qi) 
tion and gives AxGgRv(x. Q’) 

as the initial condition for the gluon distribu- 
as the first term of the expansion with respect to 6~. Therefore, 

this equation is an attempt to include the full expression for the anomalous dimension for the 
scattering off each nucleon. while we use the DLA to take into account all SC. Our hope, which 
we will confirm by numerical calculation. is that the SC are small enough for x > 10m3 and 
we can be not so careful in the accuracy of their calculation in this kinematic region. Going to 
smaller x, the DLA becomes better and eq. (23) tends to our master equation (12). 

The gluon structure function for nucleon (A = 1 ). 

In this subsection we are going to check how eq. (23) d escribes the gluon structure function 
for a nucleon, which is our main ingredient in the Mueller formula. We calculate first the ratio 

Riv Riv = = xGAhQ2)(eq (23)) 
1 xG~~~(x, Q") ’ 

for A = 1, which is shown in Fig.i. From this ratio we can see the general behavior of the SC 
as a function of In(l/x) and Q”. 

Q2 > 2GeV2[4], the SC 
In the region of the HERA data? 3 < In(l/x) < lo? and 

are not bigger than 15%. The SC give a contribution bigger than 20%’ 
only at very small value of x, where we have no experimental data. 

In the semiclassical approach (see [2]), th e 
Q2 and x dependence as 

nucleon structure function is supposed to have 

xGN(x, Q2) SC {Q2}- { ;}- . (25) 

We can calculate both exponents using the definitions 

<w>= 
aln(xGN(x, Q’)) 

aln(l/x) ’ (26) 
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Figure 7: The SC f or nucleon cA=l) as a function of In(l/x) and Q2, where ratio RI compares 
xGA with xG (GRV) distribution. 

<y>= 
dln(xG% &“I> . 

8 14Q2/Q3 * 
(27) 

The eq.(26) g ives the average value of the effective power < w > of the gluon distribution. 
xG( x, Q”) a xmcw>, which is suitable to study the small x behavior of the gluon distributions. 
Fig.8 shows the calculation of < ;J > the nucleon distribution for eq. (23) and for GRV gluon 
distribution, both as functions of In(l/x) for different values of Q2. From the figure. we can 
see that the effective powers of xGA(A = 1) and xG(GRV) h ave the same general behavior in 
the small x limit but the nucleon distribution is slightly suppressed. We calculate also, in the 
same kinematical region, the exponent < y >, given by eq (27). This is the average value of 
the anomalous dimension, which describes the effective dependence of the distribution in Q’ 
variable. Figs.9 shows < y > for the nucleon and GRV distributions, indicating that the Q2 
dependence is slightly soften by the SC. 

Comparing figures 8 and 9: we can conclude that even these more detailed characteristic of 
the gluon structure function have not been seriously affected by the SC in the nucleon case. 

We also use the DGLXP evolution equations to predict the value of the deep inelastic struc- 
ture function F2 from the sGA gluon distribution. Summing the DGLAP evolution equations 
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Figure 8: The eflective power < j: > calculated for xGA(.-l = 1) and the GRV distribution. 
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In(l/x) In(l/x) 

Figure 9: The eflective p ower of Q” dependence calculated for xGA(A = 1) and the GRV 
distribution. 
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for each quark flavor, the function F2 may be written [20] 

F = 4Q2) 
2- 

n- 

1-z 

J 0 
[z2 + (1 - ~)‘]&@!&, Qf2) (28) 

where the sea quark distributions have been neglected in comparison with the gluon distribution. 
Fig.10 shows the prediction for F2 from xGA and from the GRV distribution. compared with 
experimental data. As we can see? the magnitude of the suppression due to the SC is less than 
10% in the region of the HERA data and this suppression is smaller than the experimental 
error. 

F2 
2.0 2.0 

1.0 1.0 

Figure 10: 10: F2 F2 from xGA and the GRV distribution, compared with experimental data [4]. 

From the above results we can conclude that eq. (23) g ives a good description for the gluon 
structure function for nucleon and describes the available experimental data. Therefore. it can 
be taken as a correct first approximation in the approach to the nucleus case. 

3.6 The gluon structure function for nucleus. 

In the framework of perturbative approach it is only possible to calculate the behavior of 
the gluon distribution at small distances. The initial gluon distribution should be taken from 
the experiment. Actually the initial virtuality Qi should be big enough to guarantee that we 
are dealing with the leading twist contribution. Our main assumption is that we start the 
QCD evolution with a small value of Qi considering that the MF is a good model for high twist 

contributions in DIS off nucleus. 
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Table 1: Values of Rl,v and o for parameterization RI = RON AeQ. 

The scale of the SC governs by the value of K A, namely they are big for KA > 1 and small for 
~~4 < 1. Fig.4 shows the plot of 1c.4 = 1 for different nuclei. One can see that the SC should be 
essential for heavy nuclei starting from Ca at the accessible experimentally kinematic region. 

Now we extend the definition of RI for the nucleus case 

RI = 
xGA(x? Q”) 

AxGgRV( x: Q”) ’ 
(29) 

where the numerator is calculated using eq.( 23). F’g 1 ure 11 shows the results for the calculations 
of RI as a function of the variables In(l/x), lnQ2 and A’i3. Fig.lla presents the ratio RI for 
two different values of Q’ and for different nuclei. The suppression due to the SC increases with 

rn(l/x) and is much bigger than for the nucleon case. For A = 40 (Ca) and Q’ = 10 GeV2, 
the suppression varies from 4 % for ln( l/x) = 3 to 25 % for In(l/x) = 10. For A = 197 (Au) 
the suppression is still bigger. going from 6% to 35% in the same kinematic region. Fig. llb 
shows the same ratio for different values of Q2 for the gold. The suppression decreases with 
Q2. Figs. llc and d show the RI ratio as a function of AlI3 and x for a fixed value of Q”. 
As expected, the SC increases with ‘4. .\n interesting feature of this figure is the fact that the 
curves tend to straight lines as x increases. It occurs because. as x grows, the structure function 
xG(GRV) becomes smaller. and the correction term of (23) proportional to K. dominates. Since 
K is proportional to A ‘I3 the curves behave as straight lines. The decrease of suppression with 
Q2 is illustrated in more’detail in Figs. lie and f which presents RI as a function of lnQ2 for 
different values of x for Ca and Au: respectively. The effect is pronounced for small Q’ and z 
and diminishes as lnQ2 increases. 

This picture ( Fig.11 ) shows also that the gluon structure function is far away from the 
asymptotic one. The asymptotic behavior RI + 1 ( see Figs.lle and f ) occurs only at very 
high value of Q2 as well as in the GLR approach ( see ref. [25] ). The asymptotic A-dependence 

( RI a A-5) ) has not been seen in the accessible kinematic range of Q’ and x ( see Figs. llc 
and d and Table 1 ). This result also has been predicted in the GLR approach [24]. We want also 
to mention that parameterization RI = Rlhr A-” does not fit the result of calculations quite 
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Figure 11: RI as a function of Zn(l/z), lnQ2 and A’i3: a) RI as a function of In(l/s) for 

different nucleus and diflerent values of A; b) RI as a function of lnQ2 for different values of 

xg for Au; c) and d) RI as a function of AlI3 for diflerent Q”; e) and f) RI dependence on Q” 
for Ca and Au. 
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well for lGev* 5 Q’ 5 20GeV2 and lo-* 5 12: 5 10-j. For x w lo-’ the parameterization 
RI = RIN - R’ Ai with parameters Rllv and R’ for each value of Q2, works much better 

reflecting that only the first correction to the Born term is essential in the Mueller formula. 

We extend also the calculation of the exponents < d > and < -/ > of the semiclassical 
approach for the nuclear case. We calculate the effective power of the nuclear gluon distribution 
< w > using the expression 

<w>= 
aIn(a:GA(z. Q”)) 

aln(l/rr:) ’ 
(30) 

Fig.12 shows the results as functions of ln(l/z) f or 1 d’ff erent values of Q’ and different nucleus. 

The SC decreases the effective power of the nuclear distribution, giving rise to a flattening of 
the distribution in the small T region. 

In(l/x) 

Figure 12: < in > for diRerent values of&” and A. 

It is also interesting to notice that at small values of Q*, the effective power tends to be 
rather small? even in the nucleon case, at very small 2. However it should be stressed that 
the effective power remains bigger than the intercept of the so called “soft” Pomeron [21], 
even in the case of a sufficiently heavy nucleus (Au), for Q’ > 1GeV2. Nowadays, many 
parameterizations [22] with matching of “soft” and “hard” Pomeron have appeared triggered 
by new HERA data on diffraction dissociation [26]. Th ese p arameterization used Pomeron-like 
behavior namely, rcG(z: Q’) cx z+‘(Q2), However, if the Pomeron is a Regge pole, w cannot 
depend on Q2, and the only reasonable explanation is to describe w(Q”) as the result of the SC. 
Looking at Fig.12 we can claim the SC from the MF cannot provide sufficiently strong SC to 
reduce the value of w to 0.08, a typical value for the soft Pomeron [21], at least for Q’ 2 lGeV*. 

The calculation of the effective value of the anomalous dimension y may help us to estimate 
what distances work in the SC corrections. This effective exponent is given by 

<y>= 
aln(zGA(z, Q*)) 

WQ2/Q3 ’ 
(31) 
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In(l/x) 

Figure 13: < y > for diflerent Q’ and A. 

Fig.13 shows the results as functions of In(l/z) f or d ff i erent values of Q* and for two nuclei. 

We see that the values of y at In(l/z) <_ 5. for both Ca and Au, is very close to the results 

for GRV and for nucleon case. At smaller values of 2, the anomalous dimension presents a 
sizeable reduction. which increases with A. For In(l/z) > 15? < y > tends to zero unlike in 

the DGLAP evolution equations ( see Fig.10 for the GRV parameterization). Analysing the Q* 
dependence, we see that < ;/ > is bigger than 1 only for Q* = 0.5GeV’. For Q* = l.OGeV*. 
the anomalous dimension is close to l/2, and for Q’ > 5.0GeV2 it is always smaller than l/2. 

Using semiclassical approach: we see that 

(32) 

and if y > 1, the integral over rt in the master equation (23) b ecomes divergent, concentrating 
at small distances. 

If 1 > y 2 l/2, only the first SC term, namely, the second term in expansion of the master 
equation. is concentrated at small distances, while higher order SC are still sensitive to small rl 
behavior. Fig.13 shows that this situation occurs for Q* > 1 GeV*, and even for Q* = lGeV* 

at very small values of r. We will return to discussion of these properties of the anomalous 
dimension behavior in the next section. 

3.7 The gluon life time cutoff. 

In the DIS the incident electron penetrates the nucleus and radiates the virtual photon 
whose lifetime rY* oc & [27]. We can recover three different kinematic regions: 

1. 7+ = & < R.~N, where RNN is the characteristic distances between the nucleons 
of the nucleus. This virtual photon can be absorbed only by one nucleon and the total cross 
section is o(y*A) = Aa(y’p). 

2. RA > E,* = & > RNN, where RA is the nucleus radius. In this kinematic region the 
virtual photon can interact with the group of nucleons. However, a(y*A) is still proportional 
to A since the number of nucleons in a group is much less than A. 
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3. r-.,. = & > RA. Here. before reaching the front surface of the nucleus. the virtual 
photon “decomposes” in the developed parton cascade which then interacts with the nucleus. 
It can be shown [28] that the absorption cross section of the virtual photon will now be propor- 

tional to the surface area of the nucleus a(y’A) cx A$. because the wee partons of the parton 
cascade are absorbed at the surface and do not penetrate into the centre of the nucleus. 

Everything that we have discussed have been calculated in the third kinematic region. 
For the RHIC energies we have to develop some technique how to penetrate into the second 
one. To do this we have to remember that the opacity ( or KG ) actually depends on the 
longitudinal part of the momentum transfer ( qZ ) which could be calculated in terms of x and 
2’ of our master equation (12) , namely: qf = (x + x’)m ( see Ref.[l] ). Recalling that opacity 
Q x r2,sG(z. qz, k) S(b,, qz) we see that qZ - dependence enters to two factors: to gluon 

structure function and to the nucleon profile function. We know how to take into account the 
qz - dependence of th e gluon structure function ( see Ref. [3] where the DGLXP equation for 
qz # 0 is written ). However we neglected this effect in our present estimates, hoping that this 
dependence occurs on the hadron scale and cannot change too much the dependence of the SC 
on the number of collisions during the passage through the nucleus. 

The dependence of the profile function S(b,, qz) on qz have been discussed and in the Gaus- 
sian parametrization it can be factor out in the form: 

S(b,,q=) = S(b,) . L(q,) = S(bt) . e-Gqz . (33) 

This qz - dependence takes into account the fact that the virtual gluon can interact with the 

target only during the finite time 7 = l/mz undergoing p T < p RA collisions. Using eq. (33), 

we can obtain: 

xG&,Q2) = AzG,&Q*) - A?!’ 1 $$i$ L(q,) x' GN@': Q'*) (34) 

+ !$i [ $ /: f$ {c f h(L(q,) :G(xrTr:!j i- El(L(Q*) KGcx': 6) >I . 

Fig. 14 shows the result of our calculations. Comparing Fig.11 with this picture, one can see 

that the finite life time of the virtual gluon affects the behavior of the gluon structure function 
only at sufEiciently large x ( z >_ lo-* ) diminishing the value of the SC in this kinematic 

region. This effect turns out to be very important for the RHIC energies and has to be studied 

in more details. 

4 First corrections to the Glauber ( Mueller) Approach. 

In this section we discuss the corrections to the Glauber approach (the Mueller formula of 
eq. (12) . To understand how big could be the corrections to the Glauber approach we calculate 
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Figure 14: RI for CA and Au with gluon life time cutoff. 

the second iteration of the Mueller formula of eq. (12). As has been discussed,eq. (12) describes 
the rescattering of the fastest gluon ( gluon - gluon pair ) during the passage through a nucleus 
( see Fig.1 ). In the second iteration we take into account also the rescattering of the next to 
the fastest gluon. This is a well defined task due to the strong ordering in the parton fractions 

of energy in the parton cascade in leading In(l/z) app roximation of pQCD that we are dealing 
with. Namely: 

38 < 3, < . . . < Xl < 1 ; 

where 1 corresponds to the fastest parton in the cascade. 

(35) 

Therefore, in the second interaction we include the rescatterings of the gluons with the 
energy fraction 1 and xi ( see Fig.15 ). Doing the first iteration we insert in eq. (12) G,v(x. Q’) = 

GgRv(x,Q2). For th e second iteration we calculate the gluon structure function using eq. (12) 
substituting 

xGN xGN = = xGt&,Q"> 
A - 

x GgRV(x, Q2) ; (36) 

where xGfi is the result of the first iteration of eq. (12) that has been discussed in details in 
section 3. 

Fig.16 shows the need to subtract xGgRv in eq. (36) making the second iteration. Indeed, 

in the second iteration we take into account the rescattering of gluon 1’ - gluon 2’ pair off 
a nucleus. We picture in Fig.16 the first term of such iteration in which GilG2) pair has no 
rescatterings. It is obvious that it has been taken into account in our first iteration, so we have 
to subtract it to avoid a double counting. 
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Figure 15: Th e interaction with nucleons that is taken into account in the second iteration of 

M ueller formula. 
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Figure 16: The first term of the second iteration of eq. (36). 
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Figure 17: Second iteration calculations for RI, < iu’ >> and < y > for Ca and Au. 
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One can see in Figs.17 that the second iteration gives a big effect and changes crucially RI: 
< y >, and < CL: >. The most remarkable feature is the crucial change of the value of the 
effective power w( Q*) for the **Pomeron” intercept which tends to zero at HERA kinematic 
region. making possible the matching with “soft” high energy phenomenology. It is also very 
instructive to see how the second iteration makes more pronounced all properties of the behavior 
of the anomalous dimension ( < -/ >) that we have discussed. The main conclusions which we 
can make from Figs.17 are: (i) the second iteration gives a sizable contribution in the region 
2 < lo-* and for x 5 10m3 it becomes of the order of the first iteration; (ii) for x < 10m3 
we have to calculate the next iteration. It means that for such small x we have to develop a 
different technique to take into account rescatterings of all the partons in the parton cascade 
which will be more efficient than the simple iteration procedure for eq. (12). However? let us 
first understand why the second iteration becomes essential to establish small parameters that 
enter to our problem. 

As has been discussed. we use the GLAP evolution equations for gluon structure function 
in the region of small x. It means, that we sum the Feynman diagrams in pQCD using the 
following set of parameters: 

as < 1 ; 
1 

crs In - < 1 ; Q' CYS In - < 1 ; 
Q" 1 

Qi 
as In- In - Z 1 . 

X Qi x 
(37) 

The idea of the theoretical approach of rescattering that has been formulated in the GLR paper 
[2] is to introduce a new parameter *: 

NcasrrA 

Ic = 2Q*RZ, 
4x, Q’) (38) 

and sum all Feynman diagrams using the set of eq. (37) and K as parameters of the problem, 
neglecting all contributions of the order of: cys, cys n: crs ln(l/x), cus ln(l/x) IC. CYS ln(Q’/Qi) and 
os ln(Q*/Qi) K. It should be stressed that Mueller formula gives a solution for such approach. 
Indeed. eq. (12) depends only on K absorbing all 

( as 14Q2/Q:) W/4 1” contributions in xG(x, Q2). H owever, it is not a complete solution. 

To illustrate this point let us compare the value of the second term of the expansion of eq. (12) 
with respect to o(rf) with the first correction due to the second iteration in the first term of 
such an expansion. In other words we wish to compare the values of the diagrams in Fig.18 b 
and Fig.18a. The contribution of the diagram of Fig.18a is equal: 

%I 
AxG(x,Q*) (Fig.lBa) = 2 / $ / dQ’” K*(x’, 

where x’ and Q0 are the fraction of energy and the virtuality of gluon 1 in Fig.18a 

(39) 

: In the GLR paper the notation for tc was W. but in this paper we use K to avoid a misunderstanding since. 
in DIS. W is the energy of interaction. 
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The diagram of Fig.18b contains one more gluon and its contribution is: 

R; -L’ccrs 
AxG(x? Q”) (Fig.18b) = ~22 - 

77 J 
$ i$$ J $ J dQ”* dQ”* K2(x’7: q) 

3: * ln(l/x) ln(Q’/Qi) AxG(x. Q’)( Fig.18a) ) : 
T 

(40) 

where x’ (x”) and Q’* ( Q”*) are the fraction of energy and the virtuality of gluon 1 (1’) 

respectively in Fig.18b. Therefore. eq. (40) gives the contribution which is of the order of 
eq. (39) in the kinematic region where the set of parameters of eq. (37) holds. It means also 
that we need to sum all diagrams of Fig.18b type to obtain the full answer. In the diagram of 
Fig.18b not only one but many gluons can be emitted. Such emission leads to so called “triple 
ladder” interaction, pictured in Fig.18c ( see ref.[2] ). Th is ia d g ram is the first from so called 

“fan” diagrams of Fig. 18d. To sum them all we can neglect the third term in eq. (12) and 
treat the remained terms as an equation for xG(x: Q’). It is easy to recognize that we obtain 
the GLR equation [2][10]. G enerally speaking the GLR equation sums the most important 
diagrams in the kinematic region where ‘1~s ln(l/x) ln(Q*/Qi) > 1 and K < 1. 

5 The general approach. 

5.1 why equation? 

We would like to suggest a new approach based on the new evolution equation to sum 
all SC. However, first of all we want to argue why an equation is better than any iteration 

procedure. To illustrate this point of view let us differentiate the Mueller formula with respect 
to y = ln(l/x) and < = In Q*. It is easy to see that this derivative is equal to 

a2xG(x,Q2) = 4 

a~ at 
i72 J db; { 1 _ e- t+*‘: = $dS@:) } . (41) 

The nice property of eq. (41) is that everything enters at small distances. therefore everything 
is under theoretical control. Of course: we cannot get rid of our problems changing the pro- 
cedure of solution. Indeed, the nonperturbative effects coming from the large distances are 
still important but they are all hidden in the boundary and initial conditions to the equation. 
Therefore, an equation is a good ( correct ) way to separate what we know ( small distance 
contribution) from what we don’t ( large distance contribution). 

5.2 The generalized evolution equation. 

We suggest the following way to take into account the interaction of all partons in a parton 
cascade with the target. Let us differentiate the Mueller formula over y = ln(l/x) and t = 
ln(Q*/Qi). It gives: 

a2XGA(Y, t) = 2% Q” 

aYe 
T2 { C + In6 i- E,(K) } . (42) 
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Figure 18: Corrections to the Glauber approach. 
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Rewriting eq. (42) in terms of K given by 

* &‘&: Q’) 
’ = 2Q2R; 

(43) 

we obtain: 

a2K(Y,t) 

dY% 

+ aK(Y>t) = ?JcQs 

aY 
y{C + lnn(y, 0 + -%(K(Yd)> 1 - F(K) * (44) 

Now, let us consider the expression of eq. (44) as the equation for K This equation has the 

following nice properties: 

1. It sums all contributions of the order (cys y [)” absorbing them in zG~(y,<), as well as 
all contributions of the order of K”. Therefore, this equation solves the old problem. formulated 

in Ref.[2] and for :Vc + so eq. (44) g’ Ives the complete solution to our problem, summing all 
SC: 

2 .The solution of this equation matches with the solution of the DGLAP evolution equation 
in the DLA of perturbative QCD at K + 0; 

3. At small values of K ( /c < 1 ) eq. (44) g ives the GLR equation. Indeed. for small K we 

can expand the r.h.s of eq. (44) keeping only the second term. Rewriting the equation through 
the gluon structure function we have 

~‘sGA(Y,<) = aslV, 

dY@ 
- ccG(z, Q”) - 

T g W(z, Q2N2 > (45) 

which is the GLR equation [2] with the coefficient in front of the second term calculated by 
Mueller and Qiu [lo]. 

4. For crsy< z 1 this equation gives the Glauber ( hlueller ) formula. that we have discussed 
in details. 

5. This equation almost coincide with the equation that L.Mclerran with collaborators [29] 

derived from quite different approach and with different technique. We are sure that almost 

will disappear when they will do more careful averaging over transverse distances. 

Therefore? the great advantage of this equation in comparison with the GLR one is the fact 
that it describes the region of large K and provides the correct matching both with the GLR 
equation and with the Glauber ( Mueller ) formula. 

Eq. (44) is the second order differential equation in partial derivatives and we need two 

initial ( boundary ) conditions to specify the solution. The first one is obvious, namely, at fixed 
y and Q2 + oc 

:V,CQ nA 

’ + 2Q2R; 
xG~~~~(x, Q’) . 
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The second one we can fix in the following way: at 5 = 50 (y = yo) which is small. namely: in 
the kinematic region where crsyJ 5 1 

-vc crs 7r 
K + Kin = 

2Q2 RZ, 
XGA(X. Q”) . (46) 

where XGA is given by the Mueller formula ( see eq. (12)). Practically, we can take 20 = 10s2. 
because corrections to the XIF are small at this value of I = x0. 

5.3 The asymptotic solution. 

First observation is the fact that eq. (44) has a solution which depends 
one can check that K = nasYmP(y) . h is t e so u ion of the following equation: 1 t 

drc 
asYmP 

dY 
= F( Kuymp ) . 

The solution to the above equation is: 

J 

~WrndY) dn’ 

“arymp(Y=YO 1 
- = y-yyo. 
F( K’) 

It is easy to find the behavior of the solution to eq. (48) at large value 
c&Inn at large K ( 6s = $os ). It gives 

fL,ymp + Crsy ln(&y) at cysy > 1 . 

At small value of y, F(K) i C&K and we have: 

'hymp 'hymp + + bJmp(Y bJmp(Y = = Yo) Yo) e's(y-yo) e's(y-yo) . . 

only on y. Indeed. 

(47) 

(48) 

of y since F(n) + 

(49) 

(50) 

The solution is given in Fig.19 for ~rs = l/4 in the whole region of y for different nuclei in 
comparison with our calculations based on the IMF. We chose the value of ~~~~~~~~ = ya) from 
eq. (46). We claim this solution is the asymptotic solution to eq. (44) and will argue on this 
point a bit later. 

For nuclei the SC incorporated in the asymptotic solution turn out to be much stronger 
than the SC in the Glauber approach for any Q’ > 1 GeV2 at z > 10w2. In this kinematic 
region the solution of eq. (44) is drastically different from the Glauber one. 

A general conclusion for Fig.19 is very simple: the amount of shadowing which was taken 
into account in the MF is not enough ) at least for the gluon structure function in nuclei at 
5 < 1o-2 and we have to solve eq. (44) to obtain the correct behavior of the gluon structure 
function for nuclei. 
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Figure 19: The Glauber approach and asymptotic solution for different nuclei. 

Now, we would like to show that solution eq. (44) is the asymptotic solution of the new 
evolution equation. In order to check this we need to prove that this solution is stable. It 
means that if add a small function AK and searching for the solution to the equation in the 
form K = KaSymp + AK. we have to prove that AK turns out to be small.namely, AK < K. 

The following linear equation can be written for AK: 

d2AK(Y 7 E) 

aY at 

+ dAK(YY t = WK) 

aY 
7 l”=Grymp(Y) l”=Grymp(Y) WY7 0 . (51) 

In Ref.[l] was proven, that the solution of eq. (51) is much smaller than K. 

Therefore the asymptotic solution has a chance to be the solution of our equation in the 
region of very small x. To prove that the asymptotic solution is the solution to the equation 
we need to solve our equation in the wide kinematic region starting with our initial condition. 
We managed to do this only in semiclassical approach. 

5.4 Semiclassical Approach. 

The semiclassical approach has been adjusted to the solution of the nonlinear equation of 
eq.(44)-type in Refs. [2, 30. 311 ( f or simplicity, we assume that cys is fixed ). 

In the semiclassical approach we are looking for the solution of eq. (44) in the form 

K = es 
(52) 

where 5’ is a function with partial derivatives: 
of y and [. It means that 

g = w and $$ = y which are smooth function 

d2S as as 

WY 
<<dy’@=q (53) 
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Using eq.(53), one can easily rewrite eq.(44) in the form 

asas as 
ayz + dy = emSF(eS) G CD(S) (34) 

or 

-I(-/ + 1) = O(S) (55) 

We are going to use the method of characteristics( see, for example, ref.[33]). For equation 
in the form 

m,Y,sY,4 = 0 (56) 

we can introduce the set of characteristic lines (<(y),S(y),ti(y),y(y)), which satisfy a set of 
well defined equations (see. for example. Refs. [30] [31] for the method and Ref [l] for de- 
tailed calculation). Using eq. (54) and eq. (55)! we obtain the following set of equations for the 

characteristics: 

4 ws) dS d-y -= 
dY (7+1)X1 dy= (7+1)2 

2r + l Q(S); - = a;& , 
dY 

(57) 

where @i = $$. The initial condition for this set of equations we derive from eq.(46), namely 

so = lnfGn(yo, Jo) 

y. = aln-dYO, 0 
at E=(o 

(W 

The main properties of these equations have been considered in Ref. [ l] analytically, however. 
here. we restrict ourselves mostly the numeric solution of these equations. 

We set the initial condition y = yn = 4.6 (28 = 10e2), where the shadowing correction is 

not big and the evolution starts from y < 0. In this case dy/dy > 0 and the value of y increases 
. At the same time dS/dy < 0 and S decreases if yn < -l/2. With the decrease of S, the value 
of 0; becomes smaller and after short evolution the trajectories of the nonlinear equation start 
to approach the trajectories of the DGLAP equations. We face this situation for any trajectory 
with yo close to -1. If the value of yn is smaller than - i but the value of So is sufficiently 
big, the decrease of S due to evolution cannot provide a small value for Q’(S) and y increases 
until its value becomes bigger than -i at some value of y = yC. In this case for y > yC the 

trajectories behave as in the case with yo > - i. For yo > -l/2, the picture changes crucially. 
In this case, dS/dy > 0 : dy/dy > 0 and both increase. Such trajectories go apart from the 

trajectories of the DGLXP equation and nonlinear effects play more and more important role 
with increasing y. These trajectories approach the asymptotic solution very quickly. 
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For the numerical solution we use the 4th order Runge - Kutta method to solve our set of 
equations with the initial distributions of eq. (58). The result of the solution is given in Figs.20 
and 21. In these figures we plot the bunch of the trajectories with different initial conditions. For 
the nucleon ( Fig.20 ) we show also the dependence of y along these trajectories. One can notice 
that the trajectories behave in the way which we have discussed in our qualitative analysis. It is 
interesting to notice that the trajectories. which are different from the trajectories of the GLAP 
evolution equations, start at y = y. = 4.6 with the values of Q2 between 0.5GeV2 and 2.5GeV2 

for a nucleon. It means that. guessing which is the boundary condition at Q2 = Qi = 2.5GeV2, 

we can hope that the linear evolution equations ( the DGLXP equations) will describe the 
evolution of the deep inelastic structure function in the limited but sufficiently wide range of 

Q2. 

In Figs. 20 and 21 we plot also the lines with definite value of the ratio R = 

(horizontal lines). These lines give the way to estimate how big are the SC. 
they are rather big. 

Contour plot for Nonlinear eq. 
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Figure 20: The trajectories and contour plot for the solution of the generalized evolution equation 
for N. R = ~G(T.Q:~~~~:;;I~~~~u.ll?nJ . 

We have discussed only the solution with fixed coupling constant which we put equal to 
crs = 0.25 in the numerical calculation. The problem how to solve the equation with running 
coupling constant is still open. 

5.5 The generalized evolution equation versus the GLR equation. 

In Ref.[l] we studied in detail the solution to the GLR equation in the same semiclassical 
approximation. Our conclusion is that the GLR equation gives much stronger SC than the 
generalized evolution equation. This difference we can see comparing the solution to the both 
equation in the region ultra small 2. 
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Figure 21: The trajectories and contour plot for the solution of the generalized evolution equation 

for Ca and Au. R = rG(z,Q2)(genetaiired equatron) 
zG(z,Q2)(GLAP) . 

Indeed, our asymptotic solution turns out to be quite different from the GLR one. The 
GLR solution in the region of very small 5 leads to saturation of the gluon density [30. 31, 321. 
Saturation means that K tends to a constant in the region of small 2. The solutions of eq. (44) 

approach the asymptotic solution at 5 + 0, which does not depend on Q2, but exhibits 
sufficiently strong dependence of K on z ( see Fig.19 ), namely K c( cusln(l/z)lnln(l/s). The 
absence of saturation does not contradict any physics since gluons are bosons and it is possible 
to have a lot of bosons in the same cell of the phase space. We should admit that A. -Mueller 
first came to the same conclusion using his formula in Ref.[3]. 

6 Next steps. 

Here. we list our problems that have to be solved to complete our study of the SC : 

1. Calculation of F~(x, Q”) to compare our calculation of the SC with the available exper- 
imental data. 

2. Recalculation of the SC using more reliable Wood-Saxon parameterization for profile 
function S( b ) t instead of the Gaussian one. The form of the profile function especially essential 
to obtain a reliable estimates for the SC in the region of the moderate z 5 &- 

A’ 

3. Solution of the generalized evolution equation for running crs. The experience of solving 
the GLR equation tells us that there is a principal difference in the solutions for fixed and 
running cys, namely, the critical line of the GRL equation appears only for running crs [2]. 
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We think that it is very important to study the generalized equation with running QS and to 
compare this solution with the solution of the GRL equation. 

4. We have discussed that for RHIC energies it is very important to study in more details 
the effect of the final life-time of th gluon in a nucleus. We plan to recalculate the SC replacing 
zG(s. Q’) in our formulae by sG(;c. Q2: qz) for which the kernels of the evolution equations 
have been calculated in Ref.[2]. 

3. In all our calculations we neglected the parton interaction inside GG+ iV scattering. Our 
estimates. which have been presented in section 2. shows that this interaction should be very 
important. Indeed, for example, in the Mueller formula we have to change the parameter KG 
due to the parton interaction inside the nucleon. This change is simple, the only that we need 
to do is to replace the number of collisions A/nRi by 

‘4 A 1 
-+-A-- 
TR; TRZ, 6 

in the definition of KG in eq. (12). It means that all results will be the same but nucleus with 
the new effective number of nucleons: 

Ai 
eff = A++$ 

N 

where RA = & Ai. Using our estimates for R& = SGeVm2 we can see that effective A for 

the gold is Aifr = 9.6 instead Ai = 6. For light nuclei the change is even more essential. 
Therefore, we are planning to take into account the parton interaction inside a nucleon as soon 
as possible. 

6. We have neglected all correlations between partons of the order & which could be sizable 
in the case of the nucleus DIS. We suppose to study this problem usini the technique that has 

been developed in Ref.[34]. 

7. Everywhere through the paper we used the DLA of perturbative QCD. However. the key 

assumption that simplify our theoretical approach was the QS ln( l/z) z 1 approximation. We 
plan to develop our approach in the case of the BFKL dynamic and, therefore, to get rid of 
our assumption that crs ln(Q’/Qi) M 1. We consider this generalization as an important step, 
since our result that we have no saturation of the gluon density in nuclei even at ultra small 2 
could be an artifact our double log approximation of perturbative &CD. 

7 And what? 

We presented here our approach to the SC and a natural question arises:and what? What and 
how we can do for the RHIC physics. How our approach can help in creating of the reliable 
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Figure 22: Four stages of nucleus - nucleus collision. 

Monte Carlo code for nucleus - nucleus interaction at high energies.We are going to answer 
these hot question in this section. 

Let us consider first the space time structure of the nucleus - nucleus interaction ( see 
Fig.22). One can see four stages of this process: 

1. For time smaller that to. where to is the time of the first parton - parton interaction. we 
have a very coherent system of parton. confined in our both nuclei. We know almost nothing 
about this system. 

2. At time to the first parton - parton interaction occurs and we believe that this interaction 
destroys the coherence of our parton system at the very instant. 

3. During time from to till t h, where th is the hadronization time, we have a quark - gluon 
stage of the process. We believe that we can reach a simple and economic understanding this 
stage in framework of &CD. We also believe that new collective phenomena could be created 
in the nucleus - nucleus interaction during this stage of the process such as the Quark - Gluon 

Plasma mostly because of the high density of the produced gluons. For this stage we have the 
Monte Carlo codes based on QCD. the lattice calculation and a lot of beautiful ideas that has 
been discuss at this conference. 

4. The last stage - hadronization is a black box. Sothing is known, but the success of the 
Local- Hadron-Parton Duality in the description of the LEP data allows us to hope that this 
stage could be not very important for our understanding of the nucleus - nucleus collisions. 

Our approach can define the initial condition at t = to for the third stage. What can we 
do? 

1. We are able to calculate the inclusive cross section for gluons at t = to or, in other words! 
define the gluon distribution at t = to. Actually, it has been done by C.Escola [35] and his 

collaborator and has been presented at this conference. We can only improve his treatment of 
the SC which was based on the GLR equation. However, let us discuss briefly the formula for 
the inclusive gluon cross section. It can be written using the factorization theorem [36] in the 
form: 

da 
- =3: 
dY dP: J 

dxlda u&l (51, P:> dL h P:> ; 
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where the last factor is the hard gluon - gluon cross section and y and pt are rapidity and 

transverse momentum of produced gluon. respectively. One can see that this cross section is 
infrared unstable and diverges at small values of pt. The SC provides a natural scale that cut 

off this divergence. A rough estimate for this new scale can be done from equation 

1 
K&C = Q& = l 

(see Fig.4 ). For pt < &J(Z) the gl uon structure function zG(a::p:) x pf and one can see that 
the number of gluon with transverse momenta smaller than pt = Qo(2) turns out to be very 
small. 

2. We can calculate also the double inclusive cross section which gives the two gluon 
correlation function at t = to. W e would like to stress that for nucleus - nucleus collision this 
correlation function is big and have to be taken into account. Indeed, we have two different 
contribution to the double inclusive process, pictured in Fig.23: the production of two gluons 
from one parton cascade (see Fig.23a) and from two parton cascades ( see Fig.23b ). However. 
for nucleus - nucleus collisions the first contribution is proportional to AlA ( without the SC) 

while the second is much bigger and it is of the order of AfAi w ( without the SC and for 

the Gaussian profile function). Using our approach we can calciiat: the two gluon correlation 
function within better acuraccy than the above simple estimates. We hope, that these two 
observables: gluon distribution and two gluon correlation function will be enough for reliable 
description of the initial condition for the QCD motivated cascade during the third stage of 
our process. 

3. We think that these two observables: multiplicity of gluons and two gluon correlation 
will be enough to define the initial condition for current Monte Carlo codes. However: we think 
that these codes are doing something wrong. Indeed, we learned from A. Mueller [ 1’71 that 
correct degrees of freedom for parton cascading looks in the simplest way and which could be 
used for a probabilistic interpretation and therefore, they are natural degrees of freedom for 

Monte Carlo simulations are not quark and gluons but colourless quark - antiquark dipoles. 
The gluon structure function is the probability to find a colourless dipole with the size rL > $. 
Therefore, we think that the code should be written for such dipoles and their interaction. We 
shall answer the questions:(i) how to calculated the average multiplicity of dipoles with the size 
TL and (ii) how to calculate the correlations between such dipoles. We are going to do this in 
the nearest future. 

4. Now we want to discuss a hot question how to mix the ‘?soft” and “hard?’ Pomerons. 
The common way of doing such a mixture is to use the Glauber formula and replace in this 
formula 0( 7’1 + csoft + c&rd. We think this is a correct procedure to obtain an estimate how 
important soft or/and hard processes. In section 3 we argued that this is the most economic 
way of doing which satisfies the s-channel unitarity. However. all Monte Carlo programs that 

38 



x Al. A2 

Figure 23: Double inclusive cross section in &CD. 
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Figure 24: Total cross section in CY~ and oi orders of perturbative &CD. 

we know use for the calculation of flh,& the factorization formula, namely 

1 
uhard = ’ 2 

J 
4 dp: G(Q, P:)W~Q P:> 

4 
2 1 

which describes really the inclusive production of gluons. The factor l/2 in front does not 
help because to find flhard we need to calculate the real multiplicity but not the number of 
gluon line in the Feynman diagram. In Fig.24 we picture the ai corrections to the hard cross 
section considering the scattering of two mesons made from heavy quarks. Perturbative QCD 
is certainly a good tool to study such processes. From this picture one sees that including the 
inclusive cross section in the place of the total we missed the radiative correction to the the 
partial cross section with four quarks i the final state. 

Our way of doing is the following. We will write the Mueller formula or our more sofisticated 
approach for dipole (with size rl scattering with a nucleus. To find the proton - nucleus cross 
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section we need to calculate the integral: 

a(pA) = J,’ fi dzi 1 n zP,(r;, r: 2 { 
1 

l-e - fo,(r;kS(bt) 
} Q*(r;4:+/ , 

To find the wave function of the nucleon we have to use a model.for example the constituent 
quark model or instanton liquid model. The nice feature of this formula that the typical r? 
will be of the order 1 GeV-l due to the SC. It means that we need to know the wave function 
at sufficiently small distances where we have some control from lattice calculations and QCD 
sum rules. This formula takes into account correctly hard process and give the factorization 
formula for the inclusive production. We suppose to do an estimates using the model for the 

nucleon wave function. If they will show that we need some admixture of the soft processes we 
will add to ON in the above formula in an usual phenomenologic way: using the model of: so 
called. soft Pomeron. 

8 Conclusions. 

We have two conclusions: 

1. We hope that we convinced you that we are on the way from our Really Highly Inefficient 
Calculation to your RHIC. Much work is need to clarify the initial condition for the QCD phase 
of nucleus - nucleus interaction and this is the first and the most important task which we need 
to attack, since it will determine the correct degrees of freedom for further evolution of QCD 
cascades. 

2. Everything that we have talked about satisfies the third law of theoretical physics:ilny 
model is a theory which we apply to a kinematic region. where we cannot prove that this theory 
is wrong. We firmly believe that correct SC will provide the picture of the nucleus - nucleus 
interaction in which hard and semihard processes will play a crucial role with only small if any 
contamination of the soft contribution. 
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